Your browser doesn't support javascript.
loading
Fabrication, characterization and in vitro evaluation of triboelectric nanogenerator based on 317 L stainless steel and polylactic acid.
Li, Wei; Xu, Xiaoxue; Li, Wenjiang; Zhao, Yun; Chen, Minfang.
Afiliação
  • Li W; School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials & Devices, Key Laboratory of Display Materials and Photoelectric Device (Ministry of Education), Tianjin University of Technology, Tianjin 300384, People's Republic of China.
Nanotechnology ; 29(20): 205402, 2018 May 18.
Article em En | MEDLINE | ID: mdl-29485108
ABSTRACT
A novel, cost-effective biomedical triboelectric nanogenerator (TENG) has been fabricated based on biocompatible medical 317 L stainless steel (317 L SS) and polylactic acid (PLLA) films as the friction layers, whose surface roughness was designed by simple and low-cost laser etching and hot-embossing template methods, respectively. With the increase of the TENG's tribo-interface roughness and the molecular weight of the PLLA, the power output of TENG was greatly increased owing to more charges being produced and the excellent mechanical properties PLLA possessed. When the 317 L SS plate surface roughness was 66.54% measured by the image J software and the PLLA film with a larger molecular weight at 500 000 was patterned with the 1000 mesh screen template, the maximal short current, open voltage and transferred charge of TENG reached up to 60 µA, 150 V and ∼125 nC, respectively. At the optimum condition, the maximum instantaneous power of the TENG was 5.5 mW at a load resistance of ∼2.5 MΩ and the saturation voltage was 20 V when the load capacitance was 0.1 µF. The evaluation of the TENG's biocompatibility in vitro was performed by using the simulated body fluid (SBF) solution and ultrasonic wave to mimic the body environment with various vibrations, respectively. After 6 h ultrasonic bath for the directly immersed TENG, the pH of the SBF solution just changed slightly from 7.4 to 7.61 with an acceptable degradation of the output power of TENG. The cellular toxicity test also demonstrates that the mouse L929 cells grow excellently with normal morphology even after 5 d. These results indicate that the TENG has a good stability in the body environment and the output performance can still drive many micro-medical devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2018 Tipo de documento: Article