Your browser doesn't support javascript.
loading
Optogenetic regulation of engineered cellular metabolism for microbial chemical production.
Zhao, Evan M; Zhang, Yanfei; Mehl, Justin; Park, Helen; Lalwani, Makoto A; Toettcher, Jared E; Avalos, José L.
Afiliação
  • Zhao EM; Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 25 William Street, Princeton, New Jersey 08544, USA.
  • Zhang Y; Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 25 William Street, Princeton, New Jersey 08544, USA.
  • Mehl J; Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 25 William Street, Princeton, New Jersey 08544, USA.
  • Park H; Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 25 William Street, Princeton, New Jersey 08544, USA.
  • Lalwani MA; Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 25 William Street, Princeton, New Jersey 08544, USA.
  • Toettcher JE; Department of Molecular Biology, 140 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA.
  • Avalos JL; Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 25 William Street, Princeton, New Jersey 08544, USA.
Nature ; 555(7698): 683-687, 2018 03 29.
Article em En | MEDLINE | ID: mdl-29562237
ABSTRACT
The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation with only light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g l-1 of isobutanol and 2.38 ± 0.06 g l-1 of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for the production of valuable products.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Reatores Biológicos / Redes e Vias Metabólicas / Fermentação / Engenharia Metabólica / Optogenética / Luz Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Reatores Biológicos / Redes e Vias Metabólicas / Fermentação / Engenharia Metabólica / Optogenética / Luz Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos