Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM-DMA) valve for controlled loading and release of biologically active molecules.
Soft Matter
; 14(26): 5469-5479, 2018 Jul 04.
Article
em En
| MEDLINE
| ID: mdl-29923579
Mesoporous magnetic silica particles bearing a stimuli-responsive polymer valve were prepared and their performance as a microcapsule was evaluated. In this study, first, mesoporous magnetic iron oxide (Fe3O4) particles were prepared by a solvothermal method. Then, the magnetic particles were coated with silica and functionalized with vinyl groups using 3-(trimethoxysilyl)-propyl methacrylate (MPS). Subsequently, the Fe3O4/SiO2 composite particles grafted with MPS were used to carry out the seeded precipitation copolymerization of N-isopropylacrylamide (NIPAM) and 2,2-dimethylaminoethyl methacrylate (DMA). Here N,N'-methylenebisacrylamide (MBA) was used as a cross-linker. Brunauer-Emmett-Teller (BET) surface analysis suggested that the mesoporous structure was retained in the final Fe3O4/SiO2/P(NIPAM-DMA-MBA) composite hydrogel particles. The prepared Fe3O4/SiO2/P(NIPAM-DMA-MBA) composite hydrogel microspheres exhibited a pH-dependent volume phase transition. At lower pH values (<7), the inclusion of DMA shifted the volume phase transition to higher temperature because of the protonation of the tertiary amine groups. The composite hydrogel particles possessed a high saturation magnetization (51 emu g-1) and moved under the influence of an external magnetic field. The loading-release behaviour of these biologically active molecules suggested that a portion of the encapsulated guest molecules was released at a temperature below the lower critical solution temperature, LCST (<35 °C).
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Polímeros
/
Acrilamidas
/
Portadores de Fármacos
/
Compostos Férricos
/
Dióxido de Silício
/
Liberação Controlada de Fármacos
/
Metacrilatos
Idioma:
En
Revista:
Soft Matter
Ano de publicação:
2018
Tipo de documento:
Article