Your browser doesn't support javascript.
loading
Dumbbell gold nanoparticle dimer antennas with advanced optical properties.
Herrmann, Janning F; Höppener, Christiane.
Afiliação
  • Herrmann JF; NanoBioPhotonics Group, Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
  • Höppener C; Leibniz Institut für Photonische Technologien, Jena, Albert-Einsteinstraße 9, 07743 Jena, Germany.
Beilstein J Nanotechnol ; 9: 2188-2197, 2018.
Article em En | MEDLINE | ID: mdl-30202689
Plasmonic nanoantennas have found broad applications in the fields of photovoltaics, electroluminescence, non-linear optics and for plasmon enhanced spectroscopy and microscopy. Of particular interest are fundamental limitations beyond the dipolar approximation limit. We introduce asymmetric gold nanoparticle antennas (AuNPs) with improved optical near-field properties based on the formation of sub-nanometer size gaps, which are suitable for studying matter with high-resolution and single molecule sensitivity. These dumbbell antennas are characterized in regard to their far-field and near-field properties and are compared to similar dimer and trimer antennas with larger gap sizes. The tailoring of the gap size down to sub-nanometer length scales is based on the integration of rigid macrocyclic cucurbituril molecules. Stable dimer antennas are formed with an improved ratio of the electromagnetic field enhancement and confinement. This ratio, taken as a measure of the performance of an antenna, can even exceed that exhibited by trimer AuNP antennas composed of comparable building blocks with larger gap sizes. Fluctuations in the far-field and near-field properties are observed, which are likely caused by distinct deviations of the gap geometry arising from the faceted structure of the applied colloidal AuNPs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Beilstein J Nanotechnol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Beilstein J Nanotechnol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha