Your browser doesn't support javascript.
loading
Inorganic X-ray Scintillators Based on a Previously Unnoticed but Intrinsically Advantageous Metal Center.
Wang, Yaxing; Wang, Yumin; Dai, Xing; Liu, Wei; Yin, Xuemiao; Chen, Long; Zhai, Fuwan; Diwu, Juan; Zhang, Chao; Zhou, Ruhong; Chai, Zhifang; Liu, Ning; Wang, Shuao.
Afiliação
  • Wang Y; Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology , Sichuan University , Chengdu 610064 , P. R. China.
  • Wang Y; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Dai X; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Liu W; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Yin X; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Chen L; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Zhai F; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Diwu J; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Zhang C; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Zhou R; School of Materials Science and Engineering , Anhui University of Science and Technology , Huainan 232001 , P. R. China.
  • Chai Z; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Liu N; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.
  • Wang S; Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology , Sichuan University , Chengdu 610064 , P. R. China.
Inorg Chem ; 58(4): 2807-2812, 2019 Feb 18.
Article em En | MEDLINE | ID: mdl-30701969
ABSTRACT
Traditional inorganic X-ray scintillators are designed based on several representative metal ions (e.g., Tl+, Pb2+, Bi3+) with highly emissive nature and high atomic number aiming at the outstanding radiation stopping power. The combination of these two features gives rise to a high energy conversion efficiency from X-ray to visible emission, which is a prerequisite for an ideal scintillator and is currently one of the major limits for the further development of this field. Inspired by our recent observation on the intrinsic scintillating phenomenon in the heaviest naturally occurring element uranium, we report here a family of inorganic scintillators through combination of uranyl ions with diverse oxoanion groups (i.e., borate, phosphate, molybdate, germanate, etc.). Na2UO2(MoO4)2·(H2O) (UMO) is selected as a prototype of a uranyl-bearing inorganic scintillator, to show its intrinsic advantages in the X-ray excited luminescence (XEL), strong X-ray attenuation coefficient (XAC), reduced afterglow, and decent radiation stability, as compared with one of the most important commercial inorganic scintillators CsITl.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2019 Tipo de documento: Article