Your browser doesn't support javascript.
loading
Role of forest regrowth in global carbon sink dynamics.
Pugh, Thomas A M; Lindeskog, Mats; Smith, Benjamin; Poulter, Benjamin; Arneth, Almut; Haverd, Vanessa; Calle, Leonardo.
Afiliação
  • Pugh TAM; School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom; t.a.m.pugh@bham.ac.uk.
  • Lindeskog M; Birmingham Institute of Forest Research, University of Birmingham, B15 2TT Birmingham, United Kingdom.
  • Smith B; Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden.
  • Poulter B; Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden.
  • Arneth A; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
  • Haverd V; Department of Ecology, Montana State University, Bozeman, MT 59717.
  • Calle L; Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771.
Proc Natl Acad Sci U S A ; 116(10): 4382-4387, 2019 03 05.
Article em En | MEDLINE | ID: mdl-30782807
ABSTRACT
Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component of current carbon uptake. Here we use a global compilation of forest age observations, combined with a terrestrial biosphere model with explicit modeling of forest regrowth, to partition the global forest carbon sink between old-growth and regrowth stands over the period 1981-2010. For 2001-2010 we find a carbon sink of 0.85 (0.66-0.96) Pg year-1 located in intact old-growth forest, primarily in the moist tropics and boreal Siberia, and 1.30 (1.03-1.96) Pg year-1 located in stands regrowing after past disturbance. Approaching half of the sink in regrowth stands would have occurred from demographic changes alone, in the absence of other environmental changes. These age-constrained results show consistency with those simulated using an ensemble of demographically-enabled terrestrial biosphere models following an independent reconstruction of historical land use and management. We estimate that forests will accumulate an additional 69 (44-131) Pg C in live biomass from changes in demography alone if natural disturbances, wood harvest, and reforestation continue at rates comparable to those during 1981-2010. Our results confirm that it is not possible to understand the current global terrestrial carbon sink without accounting for the sizeable sink due to forest demography. They also imply that a large portion of the current terrestrial carbon sink is strictly transient in nature.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Árvores / Carbono / Florestas / Biomassa / Sequestro de Carbono / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Árvores / Carbono / Florestas / Biomassa / Sequestro de Carbono / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2019 Tipo de documento: Article