Your browser doesn't support javascript.
loading
Novel miRNA, miR-sc14, promotes Schwann cell proliferation and migration.
Ji, Xi-Meng; Wang, Shan-Shan; Cai, Xiao-Dong; Wang, Xing-Hui; Liu, Qian-Yan; Wang, Pan; Cheng, Zhang-Chun; Qian, Tian-Mei.
Afiliação
  • Ji XM; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong; Nonnasality Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
  • Wang SS; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong; Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
  • Cai XD; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
  • Wang XH; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
  • Liu QY; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
  • Wang P; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
  • Cheng ZC; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
  • Qian TM; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
Neural Regen Res ; 14(9): 1651-1656, 2019 Sep.
Article em En | MEDLINE | ID: mdl-31089066
ABSTRACT
MicroRNAs refer to a class of endogenous, short non-coding RNAs that mediate numerous biological functions. MicroRNAs regulate various physiological and pathological activities of peripheral nerves, including peripheral nerve repair and regeneration. Previously, using a rat sciatic nerve injury model, we identified many functionally annotated novel microRNAs, including miR-sc14. Here, we used real-time reverse transcription-polymerase chain reaction to examine miR-sc14 expression in rat sciatic nerve stumps. Our results show that miR-sc14 is noticeably altered following sciatic nerve injury, being up-regulated at 1 day and diminished at 7 days. EdU and transwell chamber assay results showed that miR-sc14 mimic promoted proliferation and migration of Schwann cells, while miR-sc14 inhibitor suppressed their proliferation and migration. Additionally, bioinformatic analysis examined potential target genes of miR-sc14, and found that fibroblast growth factor receptor 2 might be a potential target gene. Specifically, our results show changes of miR-sc14 expression in the sciatic nerve of rats at different time points after nerve injury. Appropriately, up-regulation of miR-sc14 promoted proliferation and migration of Schwann cells. Consequently, miR-sc14 may be an intervention target to promote repair of peripheral nerve injury. The study was approved by the Jiangsu Provincial Laboratory Animal Management Committee, China on March 4, 2015 (approval No. 20150304-004).
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Neural Regen Res Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Neural Regen Res Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China