Your browser doesn't support javascript.
loading
Shape memory nanocomposite fibers for untethered high-energy microengines.
Yuan, Jinkai; Neri, Wilfrid; Zakri, Cécile; Merzeau, Pascal; Kratz, Karl; Lendlein, Andreas; Poulin, Philippe.
Afiliação
  • Yuan J; Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France. jinkai.yuan@crpp.cnrs.fr philippe.poulin@crpp.cnrs.fr.
  • Neri W; Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France.
  • Zakri C; Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France.
  • Merzeau P; Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France.
  • Kratz K; Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
  • Lendlein A; Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.
  • Poulin P; Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany.
Science ; 365(6449): 155-158, 2019 07 12.
Article em En | MEDLINE | ID: mdl-31296766
Classic rotating engines are powerful and broadly used but are of complex design and difficult to miniaturize. It has long remained challenging to make large-stroke, high-speed, high-energy microengines that are simple and robust. We show that torsionally stiffened shape memory nanocomposite fibers can be transformed upon insertion of twist to store and provide fast and high-energy rotations. The twisted shape memory nanocomposite fibers combine high torque with large angles of rotation, delivering a gravimetric work capacity that is 60 times higher than that of natural skeletal muscles. The temperature that triggers fiber rotation can be tuned. This temperature memory effect provides an additional advantage over conventional engines by allowing for the tunability of the operation temperature and a stepwise release of stored energy.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Órgãos Artificiais / Fibras Musculares Esqueléticas / Nanocompostos / Fibra de Carbono / Materiais Inteligentes Idioma: En Revista: Science Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Órgãos Artificiais / Fibras Musculares Esqueléticas / Nanocompostos / Fibra de Carbono / Materiais Inteligentes Idioma: En Revista: Science Ano de publicação: 2019 Tipo de documento: Article