Your browser doesn't support javascript.
loading
Microscale residual stresses in additively manufactured stainless steel.
Chen, Wen; Voisin, Thomas; Zhang, Yin; Forien, Jean-Baptiste; Spadaccini, Christopher M; McDowell, David L; Zhu, Ting; Wang, Y Morris.
Afiliação
  • Chen W; Lawrence Livermore National Laboratory, Livermore, California, 94550, USA.
  • Voisin T; Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
  • Zhang Y; Lawrence Livermore National Laboratory, Livermore, California, 94550, USA.
  • Forien JB; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.
  • Spadaccini CM; Lawrence Livermore National Laboratory, Livermore, California, 94550, USA.
  • McDowell DL; Lawrence Livermore National Laboratory, Livermore, California, 94550, USA.
  • Zhu T; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.
  • Wang YM; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA. ting.zhu@me.gatech.edu.
Nat Commun ; 10(1): 4338, 2019 09 25.
Article em En | MEDLINE | ID: mdl-31554787
ABSTRACT
Additively manufactured (AM) metallic materials commonly possess substantial microscale internal stresses that manifest as intergranular and intragranular residual stresses. However, the impact of these residual stresses on the mechanical behaviour of AM materials remains unexplored. Here we combine in situ synchrotron X-ray diffraction experiments and computational modelling to quantify the lattice strains in different families of grains with specific orientations and associated intergranular residual stresses in an AM 316L stainless steel under uniaxial tension. We measure pronounced tension-compression asymmetries in yield strength and work hardening for as-printed stainless steel, and show they are associated with back stresses originating from heterogeneous dislocation distributions and resultant intragranular residual stresses. We further report that heat treatment relieves microscale residual stresses, thereby reducing the tension-compression asymmetries and altering work-hardening behaviour. This work establishes the mechanistic connections between the microscale residual stresses and mechanical behaviour of AM stainless steel.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos