Your browser doesn't support javascript.
loading
Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses.
Patzke, Christopher; Brockmann, Marisa M; Dai, Jinye; Gan, Kathlyn J; Grauel, M Katharina; Fenske, Pascal; Liu, Yu; Acuna, Claudio; Rosenmund, Christian; Südhof, Thomas C.
Afiliação
  • Patzke C; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. Electronic address: patzke@stanford.edu.
  • Brockmann MM; Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany.
  • Dai J; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
  • Gan KJ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
  • Grauel MK; Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany.
  • Fenske P; Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany.
  • Liu Y; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
  • Acuna C; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
  • Rosenmund C; Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany.
  • Südhof TC; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
Cell ; 179(2): 498-513.e22, 2019 10 03.
Article em En | MEDLINE | ID: mdl-31585084
Neuromodulators bind to pre- and postsynaptic G protein-coupled receptors (GPCRs), are able to quickly change intracellular cyclic AMP (cAMP) and Ca2+ levels, and are thought to play important roles in neuropsychiatric and neurodegenerative diseases. Here, we discovered in human neurons an unanticipated presynaptic mechanism that acutely changes synaptic ultrastructure and regulates synaptic communication. Activation of neuromodulator receptors bidirectionally controlled synaptic vesicle numbers within nerve terminals. This control correlated with changes in the levels of cAMP-dependent protein kinase A-mediated phosphorylation of synapsin-1. Using a conditional deletion approach, we reveal that the neuromodulator-induced control of synaptic vesicle numbers was largely dependent on synapsin-1. We propose a mechanism whereby non-phosphorylated synapsin-1 "latches" synaptic vesicles to presynaptic clusters at the active zone. cAMP-dependent phosphorylation of synapsin-1 then removes the vesicles. cAMP-independent dephosphorylation of synapsin-1 in turn recruits vesicles. Synapsin-1 thereby bidirectionally regulates synaptic vesicle numbers and modifies presynaptic neurotransmitter release as an effector of neuromodulator signaling in human neurons.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vesículas Sinápticas / Sinapsinas / Terminações Pré-Sinápticas / Proteínas Quinases Dependentes de AMP Cíclico / Transmissão Sináptica Limite: Animals / Humans Idioma: En Revista: Cell Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vesículas Sinápticas / Sinapsinas / Terminações Pré-Sinápticas / Proteínas Quinases Dependentes de AMP Cíclico / Transmissão Sináptica Limite: Animals / Humans Idioma: En Revista: Cell Ano de publicação: 2019 Tipo de documento: Article