Your browser doesn't support javascript.
loading
Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO2 Uptake and Metal-Free Heterogeneous Catalysis.
Jena, Himanshu Sekhar; Krishnaraj, Chidharth; Schmidt, Johannes; Leus, Karen; Van Hecke, Kristof; Van Der Voort, Pascal.
Afiliação
  • Jena HS; Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium.
  • Krishnaraj C; Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium.
  • Schmidt J; Technische Universität Berlin, Institut für Chemie-Funktionsmaterialien, Hardenbergstraße 40, 10623, Berlin, Germany.
  • Leus K; Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium.
  • Van Hecke K; XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium.
  • Van Der Voort P; Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium.
Chemistry ; 26(7): 1548-1557, 2020 Feb 03.
Article em En | MEDLINE | ID: mdl-31603596
ABSTRACT
Covalent triazine frameworks (CTFs) have provided a unique platform in functional material design for a wide range of applications. This work reports a series of new CTFs with two new heteroaromatic building blocks (pyrazole and isoxazole groups) through a building-block transformation approach aiming for carbon capture and storage (CCS) and metal-free catalysis. The CTFs were synthesized from their respective building blocks [(4,4'-(1H-pyrazole-3,5-diyl)dibenzonitrile (pyz) and 4,4'-(isoxazole-3,5-diyl)dibenzonitrile (isox))] under ionothermal conditions using ZnCl2 . Both of the building blocks were designed by an organic transformation of an acetylacetone containing dinitrile linker to pyrazole and isoxazole groups, respectively. Due to this organic transformation, (i) linker aromatization, (ii) higher surface areas and nitrogen contents, (iii) higher aromaticity, and (iv) higher surface basicity was achieved. Due to these enhanced properties, CTFs were explored for CO2 uptake and metal-free heterogeneous catalysis. Among all, the isox-CTF, synthesized at 400 °C, showed the highest CO2 uptake (4.92 mmol g-1 at 273 K and 2.98 mmol g-1 at 298 K at 1 bar). Remarkably, these CTFs showed excellent metal-free catalytic activity for the aerobic oxidation of benzylamine at mild reaction conditions. On studying the properties of the CTFs, it was observed that organic transformations and ligand aromatization of the materials are crucial factor to tune the important parameters that influence the CO2 uptake and the catalytic activity. Overall, this work highlights the substantial effect of designing new CTF materials by building-block organic transformations resulting in better properties for CCS applications and heterogeneous catalysis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Bélgica