Your browser doesn't support javascript.
loading
Experimental and computational electrochemistry of quinazolinespirohexadienone molecular switches - differential electrochromic vs photochromic behavior.
Webb, Eric W; Moerdyk, Jonathan P; Sluiter, Kyndra B; Pollock, Benjamin J; Speelman, Amy L; Lynch, Eugene J; Polik, William F; Gillmore, Jason G.
Afiliação
  • Webb EW; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
  • Moerdyk JP; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
  • Sluiter KB; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
  • Pollock BJ; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
  • Speelman AL; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
  • Lynch EJ; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
  • Polik WF; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
  • Gillmore JG; Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49422-9000, USA.
Beilstein J Org Chem ; 15: 2473-2485, 2019.
Article em En | MEDLINE | ID: mdl-31666882
ABSTRACT
Our undergraduate research group has long focused on the preparation and investigation of electron-deficient analogs of the perimidinespirohexadienone (PSHD) family of photochromic molecular switches for potential application as "photochromic photooxidants" for gating sensitivity to photoinduced charge transfer. We previously reported the photochemistry of two closely related and more reducible quinazolinespirohexadienones (QSHDs), wherein the naphthalene of the PSHD is replaced with a quinoline. In the present work, we report our investigation of the electrochemistry of these asymmetric QSHDs. In addition to the short wavelength and photochromic long-wavelength isomers, we have found that a second, distinct long-wavelength isomer is produced electrochemically. This different long-wavelength isomer arises from a difference in the regiochemistry of spirocyclic ring-opening. The structures of both long-wavelength isomers were ascertained by cyclic voltammetry and 1H NMR analyses, in concert with computational modeling. These results are compared to those for the symmetric parent PSHD, which due to symmetry possesses only a single possible regioisomer upon either electrochemical or photochemical ring-opening. Density functional theory calculations of bond lengths, bond orders, and molecular orbitals allow the rationalization of this differential photochromic vs electrochromic behavior of the QSHDs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Beilstein J Org Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Beilstein J Org Chem Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos