Your browser doesn't support javascript.
loading
Fano-like chiroptical response in plasmonic heterodimer nanostructures.
Tian, Xiaorui; Sun, Shuli; Leong, Eunice Sok Ping; Zhu, Guodong; Teng, Jinghua; Zhang, Baile; Fang, Yurui; Ni, Weihai; Zhang, Chun-Yang.
Afiliação
  • Tian X; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China. cyzhang@sdnu.edu.cn.
Phys Chem Chem Phys ; 22(6): 3604-3610, 2020 Feb 12.
Article em En | MEDLINE | ID: mdl-31995069
Plasmonic chirality has attracted more and more attention recently due to the enhanced chiroptical response and its potential applications in biosensing. Plasmonic Fano resonance arises from the interference between a dark narrow resonance and a bright broad resonance, and it provides a new paradigm to control the plasmon mode interactions. Even though a strong circular dichroism (CD) effect has been predicted in chiral nanostructures with a Fano resonance, there are few experimental studies, and the correlation between the two effects is unclear. In this research, we investigate these two effects in plasmonic heterodimer nanorods in the same spectral range. We find that the heterodimer nanostructure exhibits a Fano-like resonance and Fano-like chiroptical response, both of which are correlated with the coupling between a super-radiant electric dipole and a sub-radiant magnetic dipole mode. Due to the interference nature of the Fano resonance, the Fano-like chiroptical response exhibits distinctively sharp features in a narrow spectral range. This Fano-like chiroptical response can be explained by a modified chiral molecule theory and a simplified coupled electric-magnetic dipole model. This research may provide new insight into the physics picture of plasmonic chirality and paves the way for the development of sensitive plasmonic sensors.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China