Your browser doesn't support javascript.
loading
B cell zone reticular cell microenvironments shape CXCL13 gradient formation.
Cosgrove, Jason; Novkovic, Mario; Albrecht, Stefan; Pikor, Natalia B; Zhou, Zhaoukun; Onder, Lucas; Mörbe, Urs; Cupovic, Jovana; Miller, Helen; Alden, Kieran; Thuery, Anne; O'Toole, Peter; Pinter, Rita; Jarrett, Simon; Taylor, Emily; Venetz, Daniel; Heller, Manfred; Uguccioni, Mariagrazia; Legler, Daniel F; Lacey, Charles J; Coatesworth, Andrew; Polak, Wojciech G; Cupedo, Tom; Manoury, Bénedicte; Thelen, Marcus; Stein, Jens V; Wolf, Marlene; Leake, Mark C; Timmis, Jon; Ludewig, Burkhard; Coles, Mark C.
Afiliação
  • Cosgrove J; York Computational Immunology Lab, University of York, York, UK.
  • Novkovic M; Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK.
  • Albrecht S; Department of Electronic Engineering, University of York, York, UK.
  • Pikor NB; Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
  • Zhou Z; Theodor Kocher Institute, University of Bern, Bern, Switzerland.
  • Onder L; Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
  • Mörbe U; Department of Biology, University of York, York, UK.
  • Cupovic J; Biological Physical Sciences Institute (BPSI), University of York, York, UK.
  • Miller H; Department of Physics, University of York, York, UK.
  • Alden K; Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
  • Thuery A; Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
  • O'Toole P; Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
  • Pinter R; Department of Biology, University of York, York, UK.
  • Jarrett S; Biological Physical Sciences Institute (BPSI), University of York, York, UK.
  • Taylor E; Department of Physics, University of York, York, UK.
  • Venetz D; York Computational Immunology Lab, University of York, York, UK.
  • Heller M; Department of Electronic Engineering, University of York, York, UK.
  • Uguccioni M; Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK.
  • Legler DF; Department of Biology, University of York, York, UK.
  • Lacey CJ; Kennedy Institute of Rheumatology at the University of Oxford, Oxford, UK.
  • Coatesworth A; Kennedy Institute of Rheumatology at the University of Oxford, Oxford, UK.
  • Polak WG; Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK.
  • Cupedo T; Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
  • Manoury B; Department of Clinical Research, University of Bern, Bern, Switzerland.
  • Thelen M; Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
  • Stein JV; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.
  • Wolf M; York Computational Immunology Lab, University of York, York, UK.
  • Leake MC; York Teaching Hospital NHS Foundation Trust, York, UK.
  • Timmis J; Department of Surgery, Erasmus University Medical Centre, Rotterdam, Netherlands.
  • Ludewig B; Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands.
  • Coles MC; Institut Necker Enfants Malades, INSERM U1151- CNRS UMR 8253, 149 rue de Sèvres 75015 Paris, France Université René Descartes, 75005, Paris, France.
Nat Commun ; 11(1): 3677, 2020 07 22.
Article em En | MEDLINE | ID: mdl-32699279
ABSTRACT
Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Linfócitos B / Células Dendríticas Foliculares / Quimiocina CXCL13 / Microambiente Celular Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Linfócitos B / Células Dendríticas Foliculares / Quimiocina CXCL13 / Microambiente Celular Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido