Your browser doesn't support javascript.
loading
Aged Tmem106b knockout mice display gait deficits in coincidence with Purkinje cell loss and only limited signs of non-motor dysfunction.
Stroobants, Stijn; D'Hooge, Rudi; Damme, Markus.
Afiliação
  • Stroobants S; Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Leuven, 3000, Belgium.
  • D'Hooge R; Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Leuven, 3000, Belgium.
  • Damme M; Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, 24098, Germany.
Brain Pathol ; 31(2): 223-238, 2021 03.
Article em En | MEDLINE | ID: mdl-33016371
ABSTRACT
Genetic variants in TMEM106B are a major risk factor for several neurodegenerative diseases including frontotemporal degeneration, limbic-predominant age-related TDP-43 encephalopathy, Parkinson's disease, late-onset-Alzheimer's disease and constitute a genetic determinant of differential aging. TMEM106B encodes an integral lysosomal membrane protein but its precise physiological function in the central nervous system remains enigmatic. Presently, we aimed to increase understanding of TMEM106B contribution to general brain function and aging. We analyzed an aged cohort of Tmem106b knockout-, heterozygote and wild-type mice in a behavioral test battery including assessments of motor function as well as, social, emotional and cognitive function. Aged Tmem106b knockout (KO) mice displayed diverse behavioral deficits including motor impairment, gait defects and reduced startle reactivity. In contrast, no prominent deficits were observed in social, emotional or cognitive behaviors. Histologically, we observed late-onset loss of Purkinje cells followed by reactive gliosis in the cerebellum, which likely contributed to progressive decline in motor function and gait defects in particular. Reactive gliosis was not restricted to the cerebellum but observed in different areas of the brain including the brain stem and parts of the cerebral cortex. Surviving Purkinje cells showed vacuolated lysosomes in the axon initial segment, implicating TMEM106B-dependent lysosomal trafficking defects as the underlying cause of axonal and more general neuronal dysfunction contributing to behavioral impairments. Our experiments help to elucidate how TMEM106B affects spatial neuronal homeostasis and exemplifies a critical role of TMEM106B in neuronal cells for survival.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células de Purkinje / Doenças Neurodegenerativas / Coxeadura Animal / Proteínas de Membrana / Proteínas do Tecido Nervoso Tipo de estudo: Diagnostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Brain Pathol Assunto da revista: CEREBRO / PATOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células de Purkinje / Doenças Neurodegenerativas / Coxeadura Animal / Proteínas de Membrana / Proteínas do Tecido Nervoso Tipo de estudo: Diagnostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Brain Pathol Assunto da revista: CEREBRO / PATOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Bélgica