Self-rectifying resistance switching memory based on a dynamic p-n junction.
Nanotechnology
; 32(8): 085203, 2021 Feb 19.
Article
em En
| MEDLINE
| ID: mdl-33147574
Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p-n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li-ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of R OFF/R ON â¼ 104 and a large rectification ratio â¼106. In the Li-ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated [Formula: see text] complex pairs ([Formula: see text] p-type substitutional defect; [Formula: see text] n-type interstitial defect) through the transport of [Formula: see text] between the two layers, thereby induces the formation of a dynamic p-n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be â¼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanotechnology
Ano de publicação:
2021
Tipo de documento:
Article