Your browser doesn't support javascript.
loading
Translational Read-Through Therapy of RPGR Nonsense Mutations.
Vössing, Christine; Owczarek-Lipska, Marta; Nagel-Wolfrum, Kerstin; Reiff, Charlotte; Jüschke, Christoph; Neidhardt, John.
Afiliação
  • Vössing C; Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany.
  • Owczarek-Lipska M; Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany.
  • Nagel-Wolfrum K; Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, 55099 Mainz, Germany.
  • Reiff C; Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55099 Mainz, Germany.
  • Jüschke C; Eye Center, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany.
  • Neidhardt J; Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article em En | MEDLINE | ID: mdl-33182541
X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxidiazóis / Retinose Pigmentar / Códon sem Sentido / Doenças Genéticas Ligadas ao Cromossomo X / Proteínas Mutantes / Proteínas do Olho Tipo de estudo: Observational_studies Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxidiazóis / Retinose Pigmentar / Códon sem Sentido / Doenças Genéticas Ligadas ao Cromossomo X / Proteínas Mutantes / Proteínas do Olho Tipo de estudo: Observational_studies Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha