Your browser doesn't support javascript.
loading
CDK2-Mediated Upregulation of TNFα as a Mechanism of Selective Cytotoxicity in Acute Leukemia.
Ding, Husheng; Vincelette, Nicole D; McGehee, Cordelia D; Kohorst, Mira A; Koh, Brian D; Venkatachalam, Annapoorna; Meng, X Wei; Schneider, Paula A; Flatten, Karen S; Peterson, Kevin L; Correia, Cristina; Lee, Sun-Hee; Patnaik, Mrinal; Webster, Jonathan A; Ghiaur, Gabriel; Smith, B Douglas; Karp, Judith E; Pratz, Keith W; Li, Hu; Karnitz, Larry M; Kaufmann, Scott H.
Afiliação
  • Ding H; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota. Kaufmann.Scott@Mayo.edu Ding.Husheng@Mayo.edu.
  • Vincelette ND; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • McGehee CD; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
  • Kohorst MA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
  • Koh BD; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
  • Venkatachalam A; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • Meng XW; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
  • Schneider PA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
  • Flatten KS; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • Peterson KL; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • Correia C; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • Lee SH; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • Patnaik M; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • Webster JA; Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
  • Ghiaur G; Division of Hematology, Mayo Clinic, Rochester, Minnesota.
  • Smith BD; Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland.
  • Karp JE; Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland.
  • Pratz KW; Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland.
  • Li H; Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland.
  • Karnitz LM; Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, Maryland.
  • Kaufmann SH; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
Cancer Res ; 81(10): 2666-2678, 2021 05 15.
Article em En | MEDLINE | ID: mdl-33414171
ABSTRACT
Although inhibitors of the kinases CHK1, ATR, and WEE1 are undergoing clinical testing, it remains unclear how these three classes of agents kill susceptible cells and whether they utilize the same cytotoxic mechanism. Here we observed that CHK1 inhibition induces apoptosis in a subset of acute leukemia cell lines in vitro, including TP53-null acute myeloid leukemia (AML) and BCR/ABL-positive acute lymphoid leukemia (ALL), and inhibits leukemic colony formation in clinical AML samples ex vivo. In further studies, downregulation or inhibition of CHK1 triggered signaling in sensitive human acute leukemia cell lines that involved CDK2 activation followed by AP1-dependent TNF transactivation, TNFα production, and engagement of a TNFR1- and BID-dependent apoptotic pathway. AML lines that were intrinsically resistant to CHK1 inhibition exhibited high CHK1 expression and were sensitized by CHK1 downregulation. Signaling through this same CDK2-AP1-TNF cytotoxic pathway was also initiated by ATR or WEE1 inhibitors in vitro and during CHK1 inhibitor treatment of AML xenografts in vivo. Collectively, these observations not only identify new contributors to the antileukemic cell action of CHK1, ATR, and WEE1 inhibitors, but also delineate a previously undescribed pathway leading from aberrant CDK2 activation to death ligand-induced killing that can potentially be exploited for acute leukemia treatment.

SIGNIFICANCE:

This study demonstrates that replication checkpoint inhibitors can kill AML cells through a pathway involving AP1-mediated TNF gene activation and subsequent TP53-independent, TNFα-induced apoptosis, which can potentially be exploited clinically.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazinas / Pirazóis / Leucemia Mieloide Aguda / Regulação Neoplásica da Expressão Gênica / Fator de Necrose Tumoral alfa / Quinase 2 Dependente de Ciclina / Leucemia-Linfoma Linfoblástico de Células Precursoras Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Cancer Res Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazinas / Pirazóis / Leucemia Mieloide Aguda / Regulação Neoplásica da Expressão Gênica / Fator de Necrose Tumoral alfa / Quinase 2 Dependente de Ciclina / Leucemia-Linfoma Linfoblástico de Células Precursoras Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Cancer Res Ano de publicação: 2021 Tipo de documento: Article