Your browser doesn't support javascript.
loading
Anti-Trypanosoma cruzi Activity of Metabolism Modifier Compounds.
Martinez-Peinado, Nieves; Martori, Clara; Cortes-Serra, Nuria; Sherman, Julian; Rodriguez, Ana; Gascon, Joaquim; Alberola, Jordi; Pinazo, Maria-Jesus; Rodriguez-Cortes, Alheli; Alonso-Padilla, Julio.
Afiliação
  • Martinez-Peinado N; Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, 08036 Barcelona, Spain.
  • Martori C; Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
  • Cortes-Serra N; Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, 08036 Barcelona, Spain.
  • Sherman J; Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA.
  • Rodriguez A; Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA.
  • Gascon J; Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, 08036 Barcelona, Spain.
  • Alberola J; Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
  • Pinazo MJ; Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, 08036 Barcelona, Spain.
  • Rodriguez-Cortes A; Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
  • Alonso-Padilla J; Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, 08036 Barcelona, Spain.
Int J Mol Sci ; 22(2)2021 Jan 12.
Article em En | MEDLINE | ID: mdl-33445756
ABSTRACT
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects over 6 million people worldwide. Development of new drugs to treat this disease remains a priority since those currently available have variable efficacy and frequent adverse effects, especially during the long regimens required for treating the chronic stage of the disease. T. cruzi modulates the host cell-metabolism to accommodate the cell cytosol into a favorable growth environment and acquire nutrients for its multiplication. In this study we evaluated the specific anti-T. cruzi activity of nine bio-energetic modulator compounds. Notably, we identified that 17-DMAG, which targets the ATP-binding site of heat shock protein 90 (Hsp90), has a very high (sub-micromolar range) selective inhibition of the parasite growth. This inhibitory effect was also highly potent (IC50 = 0.27 µmol L-1) against the amastigote intracellular replicative stage of the parasite. Moreover, molecular docking results suggest that 17-DMAG may bind T. cruzi Hsp90 homologue Hsp83 with good affinity. Evaluation in a mouse model of chronic T. cruzi infection did not show parasite growth inhibition, highlighting the difficulties encountered when going from in vitro assays onto preclinical drug developmental stages.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tripanossomicidas / Trypanosoma cruzi / Metabolismo Energético Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tripanossomicidas / Trypanosoma cruzi / Metabolismo Energético Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha