Your browser doesn't support javascript.
loading
Transcutaneous PCO2 for Exercise Gas Exchange Efficiency in Chronic Obstructive Pulmonary Disease.
Cao, Min; Stringer, William W; Corey, Susan; Orogian, Arin; Cao, Robert; Calmelat, Robert; Lin, Fang; Casaburi, Richard; Rossiter, Harry B; Porszasz, Janos.
Afiliação
  • Cao M; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
  • Stringer WW; Department of Cardio-Pulmonary function, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
  • Corey S; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
  • Orogian A; Division of Pulmonary and Critical Care, Department of Medicine, Kaiser Permanente, San Diego, CA, USA.
  • Cao R; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
  • Calmelat R; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
  • Lin F; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
  • Casaburi R; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
  • Rossiter HB; Department of Respiratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
  • Porszasz J; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
COPD ; 18(1): 16-25, 2021 02.
Article em En | MEDLINE | ID: mdl-33455452
ABSTRACT
Gas exchange inefficiency and dynamic hyperinflation contributes to exercise limitation in chronic obstructive pulmonary disease (COPD). It is also characterized by an elevated fraction of physiological dead space (VD/VT). Noninvasive methods for accurate VD/VT assessment during exercise in patients are lacking. The current study sought to compare transcutaneous PCO2 (TcPCO2) with the gold standard-arterial PCO2 (PaCO2)-and other available methods (end tidal CO2 and the Jones equation) for estimating VD/VT during incremental exercise in COPD. Ten COPD patients completed a symptom limited incremental cycle exercise. TcPCO2 was measured by a heated electrode on the ear-lobe. Radial artery blood was collected at rest, during unloaded cycling (UL) and every minute during exercise and recovery. Ventilation and gas exchange were measured breath-by-breath. Bland-Altman analysis examined agreement of PCO2 and VD/VT calculated using PaCO2, TcPCO2, end-tidal PCO2 (PETCO2) and estimated PaCO2 by the Jones equation (PaCO2-Jones). Lin's Concordance Correlation Coefficient (CCC) was assessed. 114 measurements were obtained from the 10 COPD subjects. The bias between TcPCO2 and PaCO2 was 0.86 mmHg with upper and lower limit of agreement ranging -2.28 mmHg to 3.99 mmHg. Correlation between TcPCO2 and PaCO2 during rest and exercise was r2=0.907 (p < 0.001; CCC = 0.941) and VD/VT using TcPCO2 vs. PaCO2 was r2=0.958 (p < 0.0001; CCC = 0.967). Correlation between PaCO2-Jones and PETCO2 vs. PaCO2 were r2=0.755, 0.755, (p < 0.001; CCC = 0.832, 0.718) and for VD/VT calculation (r2=0.793, 0.610; p < 0.0001; CCC = 0.760, 0.448), respectively. The results support the accuracy of TcPCO2 to reflect PaCO2 and calculate VD/VT during rest and exercise, but not in recovery, in COPD patients, enabling improved accuracy of noninvasive assessment of gas exchange inefficiency during incremental exercise testing.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Pulmonar Obstrutiva Crônica Limite: Humans Idioma: En Revista: COPD Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Pulmonar Obstrutiva Crônica Limite: Humans Idioma: En Revista: COPD Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos