Your browser doesn't support javascript.
loading
Untapped potentials of hazardous nanoarchitectural biopolymers.
Ali, M Azam; Gould, Maree.
Afiliação
  • Ali MA; Department of Food Science, Centre for Bioengineering and Nanomedicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand. Electronic address: azam.ali@otago.ac.nz.
  • Gould M; Department of Food Science, Centre for Bioengineering and Nanomedicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
J Hazard Mater ; 411: 124740, 2021 06 05.
Article em En | MEDLINE | ID: mdl-33476911
ABSTRACT
The First Industrial Revolution began when manual labour transitioned to machines. Fossil fuels and steam eventually replaced wood and water as an energy source used predominantly for the mechanized production of textiles and iron. The emergence of the required numerous enormous factories gave rise to smoke pollution due to the immense growth in coal consumption. The manufactured gas industry produced highly toxic effluent that was released into sewers and rivers polluting the water. Many pieces of legislation were introduced to overcome this issue, but with varying degrees of effectiveness. Alongside our growth in world population, the problems that we had with waste remained, but together with our increase in number the waste produced has also increased additionally. The immense volume of waste materials generated from human activity and the potentially detrimental effects on the environment and on public health have awakened in ourselves a critical need to embrace current scientific methods for the safe disposal of wastes. We are informed daily that our food waste must be better utilized to ensure enough food is available to feed the world's growing population in a sustainable way (Thyberg and Tonjes, 2016). Some things are easy, like waste food and cellulose products can be turned into compost, but how do we recycle sheep's wool? Or shrimp shells? Despite the fact that both these substances are hazardous, and have caused environmental and economic impact from being incinerated; but we anticipate that those substances may have the potential to convert into added value applications.We have been working in this area for over 15 years, working towards managing them and seeking their added value applications. We take the biological products, process (reconstitute) and engineer them into added value products such as functional and nanostructure materials including edible films, foams and composites including medical devices useful in the human body. Anything that we can ingest, should not cause an immune response in the human system. Natural biomacromolecules display the inherent ability to perform very specific chemical, mechanical or structural roles. Specifically, protein- and polysaccharide-based biomaterials have come to light as the most promising candidates for many biomedical applications due their biomimetic and nanostructured arrangements, their multi-functional features, and their capability to function as matrices that are capable of facilitating cell-cell and cell-matrix interactions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eliminação de Resíduos Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article