Your browser doesn't support javascript.
loading
Seamless multi-reticle photonics.
Opt Lett ; 46(12): 2984-2987, 2021 Jun 15.
Article em En | MEDLINE | ID: mdl-34129590
ABSTRACT
While Moore's law predicted shrinking transistors would enable exponential scaling of electronic circuits, the footprint of photonic components is limited by the wavelength of light. Thus, future high-complexity photonic integrated circuits (PICs) such as petabit-per-second transceivers, thousand-channel switches, and photonic quantum computers will require more area than a single reticle provides. In our novel approach, we overlay and widen waveguides in adjacent reticles to stitch a smooth transition between misaligned exposures. In SiN waveguides, we measure ultralow loss of 0.0004 dB per stitch, and produce a stitched delay line 23 m in length. We extend the design to silicon channel waveguides, and predict 50-fold lower loss or 50-fold smaller footprint versus a multimode-waveguide-based method. Our approach enables large-scale PICs to scale seamlessly beyond the single-reticle limit.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2021 Tipo de documento: Article