Your browser doesn't support javascript.
loading
Nanoscale Focus Pinspot for High-Purity Quantum Emitters via Focused-Ion-Beam-Induced Luminescence Quenching.
Choi, Minho; Jun, Seongmoon; Woo, Kie Young; Song, Hyun Gyu; Yeo, Hwan-Seop; Choi, Sunghan; Park, Doyoun; Park, Chung-Hyun; Cho, Yong-Hoon.
Afiliação
  • Choi M; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Jun S; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Woo KY; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Song HG; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Yeo HS; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Choi S; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Park D; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Park CH; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Cho YH; Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
ACS Nano ; 15(7): 11317-11325, 2021 Jul 27.
Article em En | MEDLINE | ID: mdl-34165277
ABSTRACT
Epitaxially grown quantum dots (QDs), especially embedded in photonic structures, play an essential role in various quantum photonic systems as on-demand single-photon sources. However, these QDs often suffer from adjacent unwanted emitters, which contribute to the background noise of the QD emission and fundamentally limit the single-photon purity. In this paper, a nanoscale focus pinspot (NFP) technique using focused-ion-beam-induced luminescence quenching enables us to improve single-photon purity from site-controlled QD as a proof-of-concept experiment. The optical quality of the QD emission is not degraded while the signal-to-noise ratio of the QD is improved. Moreover, the QD after the NFP technique reveals the single-photon nature at further elevated temperatures owing to the reduced background noise. As the NFP technique is nondestructive, it retains the apparent physical structures and photonic functions, thereby indicating its promising potential for applying diverse high-purity quantum emitters, particularly integrated in photonic devices and circuits.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2021 Tipo de documento: Article