Your browser doesn't support javascript.
loading
Morphology-Dependent Peroxidase Mimicking Enzyme Activity of Copper Metal-Organic Polyhedra Assemblies.
Liu, Yanxiong; Wang, Baoru; Bian, Longchun; Qin, Yu; Wang, Chunqiong; Zheng, Liyan; Cao, Qiue.
Afiliação
  • Liu Y; School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
  • Wang B; School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
  • Bian L; School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
  • Qin Y; School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
  • Wang C; Yunnan Tobacco Quality Supervision and Test Station, Kunming, Yunnan, 650106, China.
  • Zheng L; School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
  • Cao Q; School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
Chemistry ; 27(63): 15730-15736, 2021 Nov 11.
Article em En | MEDLINE | ID: mdl-34505733
ABSTRACT
The morphology of nanomaterials (geometric shape and dimension) play a significant role in its various physical and chemical properties. Thus, it is essential to link morphology with performance in specific applications. For this purpose, the morphology of copper metal-organic polyhedra (Cu-MOP) can be modulated through distinct assembly process, which facilitates the exploration of the relationship between morphology and catalytic performance. In this work, the assemblies of Cu-MOP with three different morphologies (nanorods, nanofibers and nanosheets) were facilely prepared by the variation of solvent mixture of N, N-dimethylformamide (DMF) and methanol, revealed the important role of the interaction between the surface group and the solvent on the morphology of these assemblies. Cu-MOP nanofibers exhibited the highest mimetic peroxidase enzyme activity over the Cu-MOP nanosheets and nanorods, which have been utilized in the detection of glucose. Cu-MOPs assemblies with tunable morphology accompanied with adjustable mimic peroxidase activity, had great potential applications in the field of bioanalytical chemistry and biomedicals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peroxidase / Cobre Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peroxidase / Cobre Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China