Your browser doesn't support javascript.
loading
Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation.
Wu, Cai; Hwang, Maxwell; Huang, Tian-Hsiang; Chen, Yen-Ming J; Chang, Yiu-Jen; Ho, Tsung-Han; Huang, Jian; Hwang, Kao-Shing; Ho, Wen-Hsien.
Afiliação
  • Wu C; Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, No. 1, Shangcheng Road, Yiwu, Zhejiang, China.
  • Hwang M; Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang, China.
  • Huang TH; Center for Big Data Research, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Kaohsiung, 807, Taiwan.
  • Chen YJ; Department of Logistics Management, National Kaohsiung University of Science and Technology, No.1, University Road, Kaohsiung, 824, Taiwan.
  • Chang YJ; Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Kaohsiung, 807, Taiwan.
  • Ho TH; Department of Engineering Science, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.
  • Huang J; Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, No. 1, Shangcheng Road, Yiwu, Zhejiang, China.
  • Hwang KS; Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Kaohsiung, 807, Taiwan. hwang@g-mail.nsysu.edu.tw.
  • Ho WH; Department of Electrical Engineering, National Sun Yat-Sen University, No.70, Lienhai Road, Kaohsiung, 804, Taiwan. hwang@g-mail.nsysu.edu.tw.
BMC Bioinformatics ; 22(Suppl 5): 93, 2021 Nov 08.
Article em En | MEDLINE | ID: mdl-34749631
BACKGROUND: Atrial fibrillation is a paroxysmal heart disease without any obvious symptoms for most people during the onset. The electrocardiogram (ECG) at the time other than the onset of this disease is not significantly different from that of normal people, which makes it difficult to detect and diagnose. However, if atrial fibrillation is not detected and treated early, it tends to worsen the condition and increase the possibility of stroke. In this paper, P-wave morphology parameters and heart rate variability feature parameters were simultaneously extracted from the ECG. A total of 31 parameters were used as input variables to perform the modeling of artificial intelligence ensemble learning model. RESULTS: This paper applied three artificial intelligence ensemble learning methods, namely Bagging ensemble learning method, AdaBoost ensemble learning method, and Stacking ensemble learning method. The prediction results of these three artificial intelligence ensemble learning methods were compared. As a result of the comparison, the Stacking ensemble learning method combined with various models finally obtained the best prediction effect with the accuracy of 92%, sensitivity of 88%, specificity of 96%, positive predictive value of 95.7%, negative predictive value of 88.9%, F1 score of 0.9231 and area under receiver operating characteristic curve value of 0.911. CONCLUSION: In feature extraction, this paper combined P-wave morphology parameters and heart rate variability parameters as input parameters for model training, and validated the value of the proposed parameters combination for the improvement of the model's predicting effect. In the calculation of the P-wave morphology parameters, the hybrid Taguchi-genetic algorithm was used to obtain more accurate Gaussian function fitting parameters. The prediction model was trained using the Stacking ensemble learning method, so that the model accuracy had better results, which can further improve the early prediction of atrial fibrillation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrilação Atrial Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrilação Atrial Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China