Your browser doesn't support javascript.
loading
PDMS-coated γCD-MOF solid-phase microextraction fiber for BTEX analysis with boosted performances.
Li, Nan; Pu, Wenrui; Yu, Lu-Dan; Tong, Yuan-Jun; Liu, Xiwen; Wang, Shaohan; Fu, Qi; Yang, Huangsheng; Chen, Guosheng; Zhu, Fang; Ouyang, Gangfeng.
Afiliação
  • Li N; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Pu W; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Yu LD; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Tong YJ; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Liu X; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Wang S; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Fu Q; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Yang H; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Chen G; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
  • Zhu F; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China. Electronic address: ceszhuf@mail.sysu.edu.cn.
  • Ouyang G; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzh
Anal Chim Acta ; 1189: 339259, 2022 Jan 02.
Article em En | MEDLINE | ID: mdl-34815053
ABSTRACT
Owing to the ubiquitous occurrence and chemotoxicity of BTEX (benzene, toluene, ethylbenzene and xylene), the development of stable and accurate analysis methods that can assess environment risks and can generate monitoring data rapidly is urgent. In this work, a new strategy was proposed for efficient detection of BTEX. By creatively utilizing thermal deposition method, a robust SPME fiber was fabricated, where the γCD-MOF acted as the adsorbent, while PDMS functionalized as the adhesive and protective coating. Benefiting from the protection of PDMS, the γCD-MOF fiber presented significantly better extraction performance and exhibited long-term structural stabilities in aqueous or methanol samples up to a week. The stable and improved properties of γCD-MOF demonstrated that the PDMS protected the MOF components from the adverse effects of solvent. The detection limits of PDMS modified γCD-MOF fiber for BTEX was as low as 0.13-0.29 ng L-1 that accompanied with wide linear range of 1-1000 ng L-1, which was significantly superior to commercial PDMS fiber and other MOF-based fibers. Besides, the feasibility of the proposed method was verified by the quantitative determination of BTEX in real water samples. This work presents an effective strategy for creating ultrasensitive and stable SPME fibers based on γCD-MOF for applications in aqueous samples or other poor solvent.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microextração em Fase Sólida Idioma: En Revista: Anal Chim Acta Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microextração em Fase Sólida Idioma: En Revista: Anal Chim Acta Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China