Your browser doesn't support javascript.
loading
Oxidative degradation of commingled trichloroethylene and 1,4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral.
Zhou, Ziqi; Zeng, Qiang; Li, Gaoyuan; Hu, Dafu; Xia, Qingyin; Dong, Hailiang.
Afiliação
  • Zhou Z; Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
  • Zeng Q; Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China. Electronic address: zengq@c
  • Li G; Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China.
  • Hu D; Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
  • Xia Q; Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
  • Dong H; Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China. Electronic address: dongh@c
Chemosphere ; 290: 133265, 2022 Mar.
Article em En | MEDLINE | ID: mdl-34914951
Improper disposal of chlorinated solvents such as trichloroethylene (TCE) and its stabilizer 1,4-dioxane has resulted in extensive contamination in soils and groundwater. Oxidative degradation of these contaminants by strong oxidants has been proposed recently as a remediation strategy, but specific mechanisms and degradation efficiencies are still poorly understood, especially in commingled systems. In this study, a reduced iron-bearing clay (RIC), nontronite (rNAu-2), was oxygenated to produce hydroxyl radicals (•OH) for degradation of TCE and 1,4-dioxane under circumneutral and dark conditions. Results showed that TCE and 1,4-dioxane could be effectively degraded during oxygenation of rNAu-2 in both single and commingled systems. Compared with the single compound system, the degradation rates and efficiencies of TCE and 1,4-dioxane decreased in the commingled system. The negative effect was more significant for TCE than 1,4-dioxane. The commingled TCE and 1,4-dioxane impacted the degradation pattern of each other, due to their difference in •OH scavenging efficiency, surface affinity to rNAu-2 and solubility. Moreover, solution pH, buffer type, rNAu-2 dosage, and dissolved organic matter all affected •OH production and contaminant degradation efficiency. Our findings provide new insights for investigating the natural attenuation of commingled chlorinated solvents and 1,4-dioxane by RIC in redox-fluctuating environments and offer guidance for developing possible in-situ remediation strategies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tricloroetileno / Poluentes Químicos da Água / Água Subterrânea Idioma: En Revista: Chemosphere Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tricloroetileno / Poluentes Químicos da Água / Água Subterrânea Idioma: En Revista: Chemosphere Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China