Your browser doesn't support javascript.
loading
Variation in isocentre location of an Elekta Unity MR-linac through full gantry rotation.
Hunt, James R; Ebert, Martin A; Rowshanfarzad, Pejman; Riis, Hans L.
Afiliação
  • Hunt JR; School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia.
  • Ebert MA; School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia.
  • Rowshanfarzad P; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
  • Riis HL; 5D Clinics, Claremont, WA 6010, Australia.
Phys Med Biol ; 67(1)2022 01 17.
Article em En | MEDLINE | ID: mdl-34933298
ABSTRACT
Objective. The objective of this study was to separately quantify the stability of the megavoltage imager (MVI) and radiation head of an Elekta Unity MRL, throughout full gantry rotation.Approach. A ball-bearing (BB) phantom was attached to the radiation head of the Unity, while a single BB was placed at isocentre. Images were acquired during rotation, using the MVI. These images were processed using an in-house developed MATLAB program to reduce the errors resulted by noise, and the positions of the BBs in the images were analysed to extract MVI and radiation head sag data.Main results. The results returned by this method showed reproducibility, with a mean standard deviation of 7µm for the position of BBs across all gantry angles. The radiation head was found to sag throughout rotation, with a maximum course of movement of 0.59 mm. The sag pattern was stable over a period greater than a year but showed some dependence on gantry rotation direction.Significance. As MRL is a relatively new system, it is promising to have data supporting the high level of precision on one Elekta Unity machine. Isolating and quantifying the sources of uncertainty in radiation delivery may allow more sophisticated analysis of how the system performance may be improved.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aceleradores de Partículas / Movimento Idioma: En Revista: Phys Med Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aceleradores de Partículas / Movimento Idioma: En Revista: Phys Med Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Austrália