Your browser doesn't support javascript.
loading
AGC1 Deficiency: Pathology and Molecular and Cellular Mechanisms of the Disease.
Pardo, Beatriz; Herrada-Soler, Eduardo; Satrústegui, Jorgina; Contreras, Laura; Del Arco, Araceli.
Afiliação
  • Pardo B; Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
  • Herrada-Soler E; Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
  • Satrústegui J; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
  • Contreras L; Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
  • Del Arco A; Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article em En | MEDLINE | ID: mdl-35008954
ABSTRACT
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtornos Psicomotores / Antiporters / Predisposição Genética para Doença / Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central / Doenças Mitocondriais / Sistemas de Transporte de Aminoácidos Acídicos / Agrecanas Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtornos Psicomotores / Antiporters / Predisposição Genética para Doença / Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central / Doenças Mitocondriais / Sistemas de Transporte de Aminoácidos Acídicos / Agrecanas Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha