Your browser doesn't support javascript.
loading
Ultrasensitive Detection of Fe3+ Ions Using Functionalized Graphene Quantum Dots Fabricated by a One-Step Pulsed Laser Ablation Process.
Kang, Sukhyun; Han, Hyuksu; Lee, Kangpyo; Kim, Kang Min.
Afiliação
  • Kang S; Korea Institute of Industrial Technology, 137-41 Gwahakdanji-ro, Gangwon-do 25440, Republic of Korea.
  • Han H; Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
  • Lee K; Korea Institute of Industrial Technology, 137-41 Gwahakdanji-ro, Gangwon-do 25440, Republic of Korea.
  • Kim KM; Korea Institute of Industrial Technology, 137-41 Gwahakdanji-ro, Gangwon-do 25440, Republic of Korea.
ACS Omega ; 7(2): 2074-2081, 2022 Jan 18.
Article em En | MEDLINE | ID: mdl-35071895
ABSTRACT
With respect to the detection of Fe3+ ions, graphene quantum dots (GQDs) have limitations for commercialization owing to their high limit of detection (LOD). Here, we report a one-step pulsed laser ablation (PLA) process to fabricate amino-functionalized GQDs (FGQDs) for the efficient detection of Fe3+ using polypyrrole (PPy) both as a precursor (amine N) and as a surfactant and also using graphite as a carbon precursor. Using this method, the amine N groups were easily incorporated into the carbon network of the GQDs. Additionally, compared to pristine GQDs, FGQDs showed smaller particle sizes and narrower size distributions owing to the surface passivation effects of the PPy surfactant. Due to the synergistic effect of surface passivation and incorporation of amine N groups, FGQDs exhibited a sensitive response to Fe3+ ions in the concentration range of 500 nM to 50 µM, which is lower than the quality standards for Fe3+ ions (∼5.36 µM) as suggested by the World Health Organization (WHO). Furthermore, the processing time for synthesizing FGQDs by the PLA process was less than 30 min, thus allowing successful practical applications of GQDs in the sensing field.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Guideline Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Guideline Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article