Machine Learning-Assisted Pattern Recognition of Amyloid Beta Aggregates with Fluorescent Conjugated Polymers and Graphite Oxide Electrostatic Complexes.
Anal Chem
; 94(6): 2757-2763, 2022 02 15.
Article
em En
| MEDLINE
| ID: mdl-35084168
Five fluorescent positively charged poly(para-aryleneethynylene) (P1-P5) were designed to construct electrostatic complexes C1-C5 with negatively charged graphene oxide (GO). The fluorescence of conjugated polymers was quenched by the quencher GO. Three electrostatic complexes were enough to distinguish between 12 proteins with 100% accuracy. Furthermore, using these sensor arrays, we could identify the levels of Aß40 and Aß42 aggregates (monomers, oligomers, and fibrils) via employing machine learning algorithms, making it an attractive strategy for early diagnosis of Alzheimer's disease.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Óxidos
/
Química Clínica
/
Peptídeos beta-Amiloides
/
Doença de Alzheimer
/
Aprendizado de Máquina
/
Grafite
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
/
Screening_studies
Limite:
Humans
Idioma:
En
Revista:
Anal Chem
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China