Your browser doesn't support javascript.
loading
Molecular Optimization on Polymer Acceptor Enables Efficient All-Polymer Solar Cell with High Open-Circuit Voltage of 1.10 V.
Yang, Hang; Bao, Sunan; Fan, Hongyu; Fan, Chenling; Zhu, Xianming; Cui, Chaohua; Li, Yongfang.
Afiliação
  • Yang H; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Bao S; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Fan H; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Fan C; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Zhu X; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Cui C; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Li Y; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Macromol Rapid Commun ; 43(22): e2100925, 2022 Nov.
Article em En | MEDLINE | ID: mdl-35170109

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Macromol Rapid Commun Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Macromol Rapid Commun Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China