Interpretable EEG seizure prediction using a multiobjective evolutionary algorithm.
Sci Rep
; 12(1): 4420, 2022 03 15.
Article
em En
| MEDLINE
| ID: mdl-35292691
Seizure prediction might be the solution to tackle the apparent unpredictability of seizures in patients with drug-resistant epilepsy, which comprise about a third of all patients with epilepsy. Designing seizure prediction models involves defining the pre-ictal period, a transition stage between inter-ictal brain activity and the seizure discharge. This period is typically a fixed interval, with some recent studies reporting the evaluation of different patient-specific pre-ictal intervals. Recently, researchers have aimed to determine the pre-ictal period, a transition stage between regular brain activity and a seizure. Authors have been using deep learning models given the ability of such models to automatically perform pre-processing, feature extraction, classification, and handling temporal and spatial dependencies. As these approaches create black-box models, clinicians may not have sufficient trust to use them in high-stake decisions. By considering these problems, we developed an evolutionary seizure prediction model that identifies the best set of features while automatically searching for the pre-ictal period and accounting for patient comfort. This methodology provides patient-specific interpretable insights, which might contribute to a better understanding of seizure generation processes and explain the algorithm's decisions. We tested our methodology on 238 seizures and 3687 h of continuous data, recorded on scalp recordings from 93 patients with several types of focal and generalised epilepsies. We compared the results with a seizure surrogate predictor and obtained a performance above chance for 32% patients. We also compared our results with a control method based on the standard machine learning pipeline (pre-processing, feature extraction, classifier training, and post-processing), where the control marginally outperformed our approach by validating 35% of the patients. In total, 54 patients performed above chance for at least one method: our methodology or the control one. Of these 54 patients, 21 ([Formula: see text]38%) were solely validated by our methodology, while 24 ([Formula: see text]44%) were only validated by the control method. These findings may evidence the need for different methodologies concerning different patients.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Epilepsia
/
Epilepsia Resistente a Medicamentos
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Portugal