Your browser doesn't support javascript.
loading
TRPV4 Stimulation Level Regulates Ca2+-Dependent Control of Human Corneal Endothelial Cell Viability and Survival.
Donau, Jennifer; Luo, Huan; Virta, Iiris; Skupin, Annett; Pushina, Margarita; Loeffler, Jana; Haertel, Frauke V; Das, Anupam; Kurth, Thomas; Gerlach, Michael; Lindemann, Dirk; Reinach, Peter S; Mergler, Stefan; Valtink, Monika.
Afiliação
  • Donau J; Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Luo H; Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Virta I; Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
  • Skupin A; Klinik für Augenheilkunde, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
  • Pushina M; Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Loeffler J; Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Haertel FV; Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Das A; Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Kurth T; Institute of Physiology, Faculty of Medicine, University Giessen, 35392 Giessen, Germany.
  • Gerlach M; Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Lindemann D; Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Reinach PS; Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, TU Dresden, 01307 Dresden, Germany.
  • Mergler S; Core Facility Cellular Imaging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
  • Valtink M; Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany.
Membranes (Basel) ; 12(3)2022 Feb 28.
Article em En | MEDLINE | ID: mdl-35323756
The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Membranes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Membranes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha