Your browser doesn't support javascript.
loading
In situ recording of Mars soundscape.
Maurice, S; Chide, B; Murdoch, N; Lorenz, R D; Mimoun, D; Wiens, R C; Stott, A; Jacob, X; Bertrand, T; Montmessin, F; Lanza, N L; Alvarez-Llamas, C; Angel, S M; Aung, M; Balaram, J; Beyssac, O; Cousin, A; Delory, G; Forni, O; Fouchet, T; Gasnault, O; Grip, H; Hecht, M; Hoffman, J; Laserna, J; Lasue, J; Maki, J; McClean, J; Meslin, P-Y; Le Mouélic, S; Munguira, A; Newman, C E; Rodríguez Manfredi, J A; Moros, J; Ollila, A; Pilleri, P; Schröder, S; de la Torre Juárez, M; Tzanetos, T; Stack, K M; Farley, K; Williford, K.
Afiliação
  • Maurice S; Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France. sylvestre.maurice@irap.omp.eu.
  • Chide B; Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA. bchide@lanl.gov.
  • Murdoch N; Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France.
  • Lorenz RD; Space Exploration Sector, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA.
  • Mimoun D; Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France.
  • Wiens RC; Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Stott A; Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA.
  • Jacob X; Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France.
  • Bertrand T; Institut de Mécanique des Fluides, Université de Toulouse 3 Paul Sabatier, INP, CNRS, Toulouse, France.
  • Montmessin F; Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, CNRS, Sorbonne Université, Université Paris Diderot, Meudon, France.
  • Lanza NL; Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS, Université Saint-Quentin-en-Yvelines, Sorbonne Université, Guyancourt, France.
  • Alvarez-Llamas C; Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Angel SM; Universidad de Málaga, Málaga, Spain.
  • Aung M; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
  • Balaram J; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Beyssac O; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Cousin A; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, MNHN, Paris, France.
  • Delory G; Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
  • Forni O; Heliospace Corporation, Berkeley, CA, USA.
  • Fouchet T; Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
  • Gasnault O; Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, CNRS, Sorbonne Université, Université Paris Diderot, Meudon, France.
  • Grip H; Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
  • Hecht M; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Hoffman J; Haystack Observatory, Massachusetts Institute of Technology, Westford, MA, USA.
  • Laserna J; Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Lasue J; Universidad de Málaga, Málaga, Spain.
  • Maki J; Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
  • McClean J; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Meslin PY; Haystack Observatory, Massachusetts Institute of Technology, Westford, MA, USA.
  • Le Mouélic S; Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
  • Munguira A; Laboratoire de Planétologie et Géosciences, CNRS, Nantes Université, Université Angers, Nantes, France.
  • Newman CE; Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV/EHU, Bilbao, Spain.
  • Rodríguez Manfredi JA; Aeolis Corporation, Sierra Madre, CA, USA.
  • Moros J; Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
  • Ollila A; Universidad de Málaga, Málaga, Spain.
  • Pilleri P; Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Schröder S; Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
  • de la Torre Juárez M; Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Optical Sensor Systems, Berlin, Germany.
  • Tzanetos T; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Stack KM; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Farley K; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Williford K; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Nature ; 605(7911): 653-658, 2022 05.
Article em En | MEDLINE | ID: mdl-35364602
ABSTRACT
Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França