Your browser doesn't support javascript.
loading
Dementia risk predictions from German claims data using methods of machine learning.
Reinke, Constantin; Doblhammer, Gabriele; Schmid, Matthias; Welchowski, Thomas.
Afiliação
  • Reinke C; Institute for Sociology and Demography, University of Rostock, Rostock, Germany.
  • Doblhammer G; Institute for Sociology and Demography, University of Rostock, Rostock, Germany.
  • Schmid M; German Center for Neurodegenerative Diseases, Bonn, Germany.
  • Welchowski T; German Center for Neurodegenerative Diseases, Bonn, Germany.
Alzheimers Dement ; 19(2): 477-486, 2023 02.
Article em En | MEDLINE | ID: mdl-35451562
INTRODUCTION: We examined whether German claims data are suitable for dementia risk prediction, how machine learning (ML) compares to classical regression, and what the important predictors for dementia risk are. METHODS: We analyzed data from the largest German health insurance company, including 117,895 dementia-free people age 65+. Follow-up was 10 years. Predictors were: 23 age-related diseases, 212 medical prescriptions, 87 surgery codes, as well as age and sex. Statistical methods included logistic regression (LR), gradient boosting (GBM), and random forests (RFs). RESULTS: Discriminatory power was moderate for LR (C-statistic = 0.714; 95% confidence interval [CI] = 0.708-0.720) and GBM (C-statistic = 0.707; 95% CI  = 0.700-0.713) and lower for RF (C-statistic = 0.636; 95% CI  = 0.628-0.643). GBM had the best model calibration. We identified antipsychotic medications and cerebrovascular disease but also a less-established specific antibacterial medical prescription as important predictors. DISCUSSION: Our models from German claims data have acceptable accuracy and may provide cost-effective decision support for early dementia screening.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina / Seguro Saúde Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans Idioma: En Revista: Alzheimers Dement Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina / Seguro Saúde Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans Idioma: En Revista: Alzheimers Dement Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha