Your browser doesn't support javascript.
loading
In vivo imaging of astrocytes in the whole brain with engineered AAVs and diffusion-weighted magnetic resonance imaging.
Li, Mei; Liu, Zhuang; Wu, Yang; Zheng, Ning; Liu, Xiaodong; Cai, Aoling; Zheng, Danhao; Zhu, Jinpiao; Wu, Jinfeng; Xu, Lingling; Li, Xihai; Zhu, Ling-Qiang; Manyande, Anne; Xu, Fuqiang; Wang, Jie.
Afiliação
  • Li M; The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Scie
  • Liu Z; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
  • Wu Y; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
  • Zheng N; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
  • Liu X; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
  • Cai A; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
  • Zheng D; Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
  • Zhu J; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
  • Wu J; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
  • Xu L; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
  • Li X; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
  • Zhu LQ; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
  • Manyande A; Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
  • Xu F; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
  • Wang J; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, C
Mol Psychiatry ; 2022 Apr 28.
Article em En | MEDLINE | ID: mdl-35484244
ABSTRACT
Astrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed. The following steps were included constructing recombinant AAV vectors for astrocyte-specific expression, detecting MRI reporters in cell culture, brain regions, or whole brain following cell transduction, stereotactic injection, or tail vein injection. The astrocytes were detected by both fluorescent imaging and Diffusion-weighted MRI. The novel AAV mutation (Site-directed mutagenesis of surface-exposed tyrosine (Y) residues on the AAV5 capsid) significantly increased fluorescence intensity (p < 0.01) compared with the AAV5 wild type. Transduction of the rAAV2/5 carrying AQP1 induced the titer-dependent changes in MRI contrast in cell cultures (p < 0.05) and caudate-putamen (CPu) in the brain (p < 0.05). Furthermore, the MRI revealed a good brain-wide alignment between AQP1 levels and ADC signals, which increased over time in most of the transduced brain regions. In addition, the rAAV2/PHP.eB serotype efficiently introduced AOP1 expression in the whole brain via tail vein injection. This study provides an MRI-based approach to detect dynamic changes in astrocytes in live animals. The novel in vivo tool could help us to understand the complexity of neuronal and glial networks in different pathophysiological conditions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mol Psychiatry Assunto da revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mol Psychiatry Assunto da revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Ano de publicação: 2022 Tipo de documento: Article