Your browser doesn't support javascript.
loading
Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets.
Zou, Wei; Zhao, Chenxu; Zhang, Xingli; Jin, Caixia; Jiang, Kai; Zhou, Qixing.
Afiliação
  • Zou W; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 45300
  • Zhao C; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 45300
  • Zhang X; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 45300
  • Jin C; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 45300
  • Jiang K; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 45300
  • Zhou Q; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Environ Sci Technol ; 56(13): 9556-9568, 2022 07 05.
Article em En | MEDLINE | ID: mdl-35576172
Thorough investigations of the environmental fate and risks are necessary for the safe application of engineered nanomaterials. Nevertheless, the current understanding of potential transformations of MoS2 (an intensively studied two-dimensional nanosheet) upon interactions with ubiquitous environmentally relevant thiols (ERTs) in water is limited. This study revealed that two ERTs, l-cysteine and mercaptoacetic acid, could modify MoS2 by covalently grafting thiol groups on S atoms of 1T phases, improving the colloidal persistence and chemical stability of MoS2. Compared with the pristine form, MoS2-thiols with higher dispersity exhibited significantly mitigated envelopment and ultrastructural damage to microalgae. MoS2-triggered growth inhibition, upregulation of reactive oxygen species, photosynthetic injury, and metabolic perturbation in algae were remarkably attenuated by ERTs. The diminished capability for MoS2 to generate reactive intermediates and glutathione oxidation driven by ERTs caused the weakness of oxidative stress and negative effects. Additionally, molecular dynamics simulations demonstrated that ERTs altered the extent of the influence of MoS2 on the secondary structures and functions of adsorbed intracellular proteins, which also contributed to the lower phytotoxicity of MoS2. Our findings provide evidence for the crucial role of specific organic ligands in the risk of MoS2 in aquatic environments.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanoestruturas / Molibdênio Tipo de estudo: Risk_factors_studies Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanoestruturas / Molibdênio Tipo de estudo: Risk_factors_studies Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article