Your browser doesn't support javascript.
loading
Dynamic fit index cutoffs for one-factor models.
McNeish, Daniel; Wolf, Melissa G.
Afiliação
  • McNeish D; Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ, 85287, USA. dmcneish@asu.edu.
  • Wolf MG; University of California, Santa Barbara, USA.
Behav Res Methods ; 55(3): 1157-1174, 2023 04.
Article em En | MEDLINE | ID: mdl-35585278
Assessing whether a multiple-item scale can be represented with a one-factor model is a frequent interest in behavioral research. Often, this is done in a factor analysis framework with approximate fit indices like RMSEA, CFI, or SRMR. These fit indices are continuous measures, so values indicating acceptable fit are up to interpretation. Cutoffs suggested by Hu and Bentler (1999) are a common guideline used in empirical research. However, these cutoffs were derived with intent to detect omitted cross-loadings or omitted factor covariances in multifactor models. These types of misspecifications cannot exist in one-factor models, so the appropriateness of using these guidelines in one-factor models is uncertain. This paper uses a simulation study to address whether traditional fit index cutoffs are sensitive to the types of misspecifications common in one-factor models. The results showed that traditional cutoffs have very poor sensitivity to misspecification in one-factor models and that the traditional cutoffs generalize poorly to one-factor contexts. As an alternative, we investigate the accuracy and stability of the recently introduced dynamic fit cutoff approach for creating fit index cutoffs for one-factor models. Simulation results indicated excellent performance of dynamic fit index cutoffs to classify correct or misspecified one-factor models and that dynamic fit index cutoffs are a promising approach for more accurate assessment of model fit in one-factor contexts.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Pesquisa Comportamental Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Behav Res Methods Assunto da revista: CIENCIAS DO COMPORTAMENTO Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Pesquisa Comportamental Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Behav Res Methods Assunto da revista: CIENCIAS DO COMPORTAMENTO Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos