Your browser doesn't support javascript.
loading
Enabling ultra-low-voltage switching in BaTiO3.
Jiang, Y; Parsonnet, E; Qualls, A; Zhao, W; Susarla, S; Pesquera, D; Dasgupta, A; Acharya, M; Zhang, H; Gosavi, T; Lin, C-C; Nikonov, D E; Li, H; Young, I A; Ramesh, R; Martin, L W.
Afiliação
  • Jiang Y; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Parsonnet E; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Qualls A; Department of Physics, University of California, Berkeley, CA, USA.
  • Zhao W; Department of Physics, University of California, Berkeley, CA, USA.
  • Susarla S; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Pesquera D; National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Dasgupta A; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Acharya M; Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain.
  • Zhang H; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Gosavi T; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Lin CC; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Nikonov DE; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Li H; Components Research, Intel Corporation, Hillsboro, OR, USA.
  • Young IA; Components Research, Intel Corporation, Hillsboro, OR, USA.
  • Ramesh R; Components Research, Intel Corporation, Hillsboro, OR, USA.
  • Martin LW; Components Research, Intel Corporation, Hillsboro, OR, USA.
Nat Mater ; 21(7): 779-785, 2022 Jul.
Article em En | MEDLINE | ID: mdl-35618823
ABSTRACT
Single crystals of BaTiO3 exhibit small switching fields and energies, but thin-film performance is considerably worse, thus precluding their use in next-generation devices. Here, we demonstrate high-quality BaTiO3 thin films with nearly bulk-like properties. Thickness scaling provides access to the coercive voltages (<100 mV) and fields (<10 kV cm-1) required for future applications and results in a switching energy of <2 J cm-3 (corresponding to <2 aJ per bit in a 10 × 10 × 10 nm3 device). While reduction in film thickness reduces coercive voltage, it does so at the expense of remanent polarization. Depolarization fields impact polar state stability in thicker films but fortunately suppress the coercive field, thus driving a deviation from Janovec-Kay-Dunn scaling and enabling a constant coercive field for films <150 nm in thickness. Switching studies reveal fast speeds (switching times of ~2 ns for 25-nm-thick films with 5-µm-diameter capacitors) and a pathway to subnanosecond switching. Finally, integration of BaTiO3 thin films onto silicon substrates is shown. We also discuss what remains to be demonstrated to enable the use of these materials for next-generation devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Mater Assunto da revista: CIENCIA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Mater Assunto da revista: CIENCIA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos