Your browser doesn't support javascript.
loading
SECISBP2L-Mediated Selenoprotein Synthesis Is Essential for Autonomous Regulation of Oligodendrocyte Differentiation.
Dai, Zhong-Min; Guo, Wei; Yu, Dan; Zhu, Xiao-Jing; Sun, Shuhui; Huang, Hao; Jiang, Min; Xie, Binghua; Zhang, Zunyi; Qiu, Mengsheng.
Afiliação
  • Dai ZM; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Guo W; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Yu D; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Zhu XJ; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Sun S; The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China.
  • Huang H; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Jiang M; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Xie B; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Zhang Z; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
  • Qiu M; Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China.
J Neurosci ; 42(30): 5860-5869, 2022 07 27.
Article em En | MEDLINE | ID: mdl-35760530
Thyroid hormone (TH) controls the timely differentiation of oligodendrocytes (OLs), and its deficiency can delay myelin development and cause mental retardation. Previous studies showed that the active TH T3 is converted from its prohormone T4 by the selenoprotein DIO2, whose mRNA is primarily expressed in astrocytes in the CNS. In the present study, we discovered that SECISBP2L is highly expressed in differentiating OLs and is required for DIO2 translation. Conditional knock-out (CKO) of Secisbp2l in OL lineage resulted in a decreased level of DIO2 and T3, accompanied by impaired OL differentiation, hypomyelination and motor deficits in both sexes of mice. Moreover, the defective differentiation of OLs in Secisbp2l mutants can be alleviated by T3 or its analog, but not the prohormone T4. The present study has provided strong evidence for the autonomous regulation of OL differentiation by its intrinsic T3 production mediated by the novel SECISBP2L-DIO2-T3 pathway during myelin development.SIGNIFICANCE STATEMENT Secisbp2l is specifically expressed in differentiating oligodendrocytes (OLs) and is essential for selenoprotein translation in OLs. Secisbp2l regulates Dio2 translation for active thyroid hormone (TH) T3 production in the CNS. Autonomous regulation of OLs differentiation via SECISBP2L-DIO2-T3 pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligodendroglia / Selenoproteínas / Neurogênese Limite: Animals Idioma: En Revista: J Neurosci Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligodendroglia / Selenoproteínas / Neurogênese Limite: Animals Idioma: En Revista: J Neurosci Ano de publicação: 2022 Tipo de documento: Article