A SOX17-PDGFB signaling axis regulates aortic root development.
Nat Commun
; 13(1): 4065, 2022 07 13.
Article
em En
| MEDLINE
| ID: mdl-35831318
Developmental etiologies causing complex congenital aortic root abnormalities are unknown. Here we show that deletion of Sox17 in aortic root endothelium in mice causes underdeveloped aortic root leading to a bicuspid aortic valve due to the absence of non-coronary leaflet and mispositioned left coronary ostium. The respective defects are associated with reduced proliferation of non-coronary leaflet mesenchyme and aortic root smooth muscle derived from the second heart field cardiomyocytes. Mechanistically, SOX17 occupies a Pdgfb transcriptional enhancer to promote its transcription and Sox17 deletion inhibits the endothelial Pdgfb transcription and PDGFB growth signaling to the non-coronary leaflet mesenchyme. Restoration of PDGFB in aortic root endothelium rescues the non-coronary leaflet and left coronary ostium defects in Sox17 nulls. These data support a SOX17-PDGFB axis underlying aortic root development that is critical for aortic valve and coronary ostium patterning, thereby informing a potential shared disease mechanism for concurrent anomalous aortic valve and coronary arteries.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Doença da Válvula Aórtica Bicúspide
/
Cardiopatias Congênitas
/
Doenças das Valvas Cardíacas
Limite:
Animals
Idioma:
En
Revista:
Nat Commun
Assunto da revista:
BIOLOGIA
/
CIENCIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos