Your browser doesn't support javascript.
loading
Highly efficient A-site cation exchange in perovskite quantum dot for solar cells.
Zhao, Chenyu; Zhang, Xuliang; Huang, Hehe; Yuan, Jianyu.
Afiliação
  • Zhao C; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, People's Republic of China.
  • Zhang X; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, People's Republic of China.
  • Huang H; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, People's Republic of China.
  • Yuan J; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, People's Republic of China.
J Chem Phys ; 157(3): 031101, 2022 Jul 21.
Article em En | MEDLINE | ID: mdl-35868943
ABSTRACT
The mixed cation colloidal Cs1-XFAXPbI3 perovskite quantum dots (PQDs) obtained by cation exchange between CsPbI3 and FAPbI3 PQDs have been reported to exhibit enhanced photovoltaic performance. However, the cation exchange mechanism requires further in-depth investigation in terms of both material properties and device application. In this work, the impact of PQD weight ratio, PQD concentration, and host solvent polarity during cation exchange is comprehensively investigated for the first time. In addition, the whole exchange process under varying conditions is monitored by photoluminescence spectroscopy. As a result, we observe extremely fast cation exchange (∼20 min) under a condition at a CsPbI3/FAPbI3 PQD weight ratio of 11, a concentration of 70 mg/ml, and a host solvent using toluene. Moreover, we directly fabricate a PQD solar cell device using these obtained mixed cation Cs0.5FA0.5PbI3 PQDs and achieved an enhanced power conversion efficiency of 14.58%. We believe that these results would provide more insights into the cation exchange in emerging PQDs toward efficient photovoltaic fabrication and application.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2022 Tipo de documento: Article