Your browser doesn't support javascript.
loading
In Silico Designed Multi-Epitope Immunogen "Tpme-VAC/LGCM-2022" May Induce Both Cellular and Humoral Immunity against Treponema pallidum Infection.
Gomes, Lucas Gabriel Rodrigues; Rodrigues, Thaís Cristina Vilela; Jaiswal, Arun Kumar; Santos, Roselane Gonçalves; Kato, Rodrigo Bentes; Barh, Debmalya; Alzahrani, Khalid J; Banjer, Hamsa Jameel; Soares, Siomar de Castro; Azevedo, Vasco; Tiwari, Sandeep.
Afiliação
  • Gomes LGR; Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil.
  • Rodrigues TCV; Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil.
  • Jaiswal AK; Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil.
  • Santos RG; Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil.
  • Kato RB; Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil.
  • Barh D; Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil.
  • Alzahrani KJ; Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India.
  • Banjer HJ; Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
  • Soares SC; Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
  • Azevedo V; Department of Immunology, Microbiology, and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba 38025-180, Brazil.
  • Tiwari S; Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil.
Vaccines (Basel) ; 10(7)2022 Jun 25.
Article em En | MEDLINE | ID: mdl-35891183
Syphilis, a sexually transmitted infection caused by the spirochete Treponema pallidum, has seen a resurgence over the past years. T. pallidum is capable of early dissemination and immune evasion, and the disease continues to be a global healthcare burden. The purpose of this study was to design a multi-epitope immunogen through an immunoinformatics-based approach. Multi-epitope immunogens constitute carefully selected epitopes belonging to conserved and essential bacterial proteins. Several physico-chemical characteristics, such as antigenicity, allergenicity, and stability, were determined. Further, molecular docking and dynamics simulations were performed, ensuring binding affinity and stability between the immunogen and TLR-2. An in silico cloning was performed using the pET-28a(+) vector and codon adaptation for E. coli. Finally, an in silico immune simulation was performed. The in silico predictions obtained in this work indicate that this construct would be capable of inducing the requisite immune response to elicit protection against T. pallidum. Through this methodology we have designed a promising potential vaccine candidate for syphilis, namely Tpme-VAC/LGCM-2022. However, it is necessary to validate these findings in in vitro and in vivo assays.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Vaccines (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Vaccines (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil