Your browser doesn't support javascript.
loading
Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped Cu9S5 nanozymes.
Zhou, Zhaoru; Gao, Zhimin; Chen, Wei; Wang, Xiaozhao; Chen, Zhankun; Zheng, Zhaocong; Chen, Qianyi; Tan, Meiling; Liu, Donglian; Zhang, Yaru; Hou, Zhiyao.
Afiliação
  • Zhou Z; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R.
  • Gao Z; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R.
  • Chen W; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 5115
  • Wang X; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 5115
  • Chen Z; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.
  • Zheng Z; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R.
  • Chen Q; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R.
  • Tan M; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R.
  • Liu D; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China. Electronic address: 610777553@qq.com.
  • Zhang Y; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R.
  • Hou Z; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R.
Acta Biomater ; 151: 600-612, 2022 Oct 01.
Article em En | MEDLINE | ID: mdl-35953045
ABSTRACT
The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Therefore, how to construct a CDT treatment nanosystem with high yield and full utilization of ROS in tumor site is the main issue of CDT. Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (LA), abbreviated as m-MCS@LA, is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS based on the catalytic performance of multivalent metal ions, which were served as nanozymes, exhibit enhanced Fenton-like and glutathione (GSH) peroxidase-like activities in comparison to Cu9S5 nanoparticles without Mo-doping. Once placed in tumor microenvironment (TME), the existence of redox couples (Cu+/Cu2+ and Mo4+/Mo6+) in m-MCS enabled it to react with hydrogen peroxide (H2O2) to generate ·OH for achieving CDT effect via Fenton-like reaction. Meanwhile, m-MCS could consume overexpressed GSH in tumor microenvironment (TME) to alleviate antioxidant capability for enhancing CDT effect. Moreover, m-MCS with mesoporous structure could be employed as the carrier to load natural nitric oxide (NO) donor LA. US as the excitation source with high tissue penetration can trigger m-MCS@LA to produce NO. As the gas transmitter with physiological functions, NO could play dual roles to kill cancer cells through gas therapy directly, and enhance CDT effect by inhibiting protective autophagy simultaneously. As a result, this US-triggered and NO-mediated synergetic cancer chemodynamic/gas therapy based on m-MCS@LA NPs can effectively eliminate primary tumor and achieved tumor-specific treatment, which provide a possible strategy for developing more effective CDT in future practical applications. STATEMENT OF

SIGNIFICANCE:

The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (m-MCS@LA) is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS with double redox couples presents the enhanced enzyme-like activities to perform cascade reactions for reducing GSH and generating ROS. LA loaded by m-MCS can produce NO triggered by US to inhibit the mitochondria protective autophagy for reactivating mitochondria involved apoptosis pathway. The US-triggered and NO-mediated CDT based on m-MCS@LA can effectively eliminate primary tumor through the high yield and full utilization of ROS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peróxido de Hidrogênio / Neoplasias Limite: Humans Idioma: En Revista: Acta Biomater Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peróxido de Hidrogênio / Neoplasias Limite: Humans Idioma: En Revista: Acta Biomater Ano de publicação: 2022 Tipo de documento: Article