Your browser doesn't support javascript.
loading
Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia.
Huang, Benjamin J; Smith, Jenny L; Farrar, Jason E; Wang, Yi-Cheng; Umeda, Masayuki; Ries, Rhonda E; Leonti, Amanda R; Crowgey, Erin; Furlan, Scott N; Tarlock, Katherine; Armendariz, Marcos; Liu, Yanling; Shaw, Timothy I; Wei, Lisa; Gerbing, Robert B; Cooper, Todd M; Gamis, Alan S; Aplenc, Richard; Kolb, E Anders; Rubnitz, Jeffrey; Ma, Jing; Klco, Jeffery M; Ma, Xiaotu; Alonzo, Todd A; Triche, Timothy; Meshinchi, Soheil.
Afiliação
  • Huang BJ; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA. ben.huang@ucsf.edu.
  • Smith JL; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA. ben.huang@ucsf.edu.
  • Farrar JE; Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Wang YC; University of Arkansas for Medical Sciences & Arkansas Children's Research Institute, Little Rock, AR, USA.
  • Umeda M; Children's Oncology Group, Monrovia, CA, USA.
  • Ries RE; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  • Leonti AR; Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Crowgey E; Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Furlan SN; Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA.
  • Tarlock K; Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Armendariz M; Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.
  • Liu Y; Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Shaw TI; Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.
  • Wei L; School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
  • Gerbing RB; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  • Cooper TM; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  • Gamis AS; Michael Smith Genome Sciences Centre, Vancouver, BC, Canada.
  • Aplenc R; Children's Oncology Group, Monrovia, CA, USA.
  • Kolb EA; Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.
  • Rubnitz J; Children's Mercy Hospitals and Clinics, Kansas City, MO, USA.
  • Ma J; Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  • Klco JM; Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA.
  • Ma X; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  • Alonzo TA; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  • Triche T; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  • Meshinchi S; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Nat Commun ; 13(1): 5487, 2022 09 19.
Article em En | MEDLINE | ID: mdl-36123353
Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in our aggregated pediatric study population, LSC17 is no longer predictive within established cytogenetic and molecular (cytomolecular) risk groups. Therefore, we identify distinct LSC signatures on the basis of AML cytomolecular subtypes (LSC47) that were more predictive than LSC17. Based on these findings, we build a robust relapse prediction model within a training cohort and then validate it within independent cohorts. Here, we show that LSC47 increases the predictive power of conventional risk stratification and that applying biomarkers in a manner that is informed by cytomolecular profiling outperforms a uniform biomarker approach.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Perfilação da Expressão Gênica Tipo de estudo: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Child / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Perfilação da Expressão Gênica Tipo de estudo: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Child / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos