Your browser doesn't support javascript.
loading
Extending the spectrum of fully integrated photonics to submicrometre wavelengths.
Tran, Minh A; Zhang, Chong; Morin, Theodore J; Chang, Lin; Barik, Sabyasachi; Yuan, Zhiquan; Lee, Woonghee; Kim, Glenn; Malik, Aditya; Zhang, Zeyu; Guo, Joel; Wang, Heming; Shen, Boqiang; Wu, Lue; Vahala, Kerry; Bowers, John E; Park, Hyundai; Komljenovic, Tin.
Afiliação
  • Tran MA; Nexus Photonics, Goleta, CA, USA.
  • Zhang C; Nexus Photonics, Goleta, CA, USA.
  • Morin TJ; Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA.
  • Chang L; Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA. linchang@ucsb.edu.
  • Barik S; Nexus Photonics, Goleta, CA, USA.
  • Yuan Z; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
  • Lee W; Nexus Photonics, Goleta, CA, USA.
  • Kim G; Nexus Photonics, Goleta, CA, USA.
  • Malik A; Nexus Photonics, Goleta, CA, USA.
  • Zhang Z; Nexus Photonics, Goleta, CA, USA.
  • Guo J; Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA.
  • Wang H; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
  • Shen B; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
  • Wu L; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
  • Vahala K; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
  • Bowers JE; Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA.
  • Park H; Nexus Photonics, Goleta, CA, USA.
  • Komljenovic T; Nexus Photonics, Goleta, CA, USA. komljenovic@nexusphotonics.com.
Nature ; 610(7930): 54-60, 2022 10.
Article em En | MEDLINE | ID: mdl-36171286
Integrated photonics has profoundly affected a wide range of technologies underpinning modern society1-4. The ability to fabricate a complete optical system on a chip offers unrivalled scalability, weight, cost and power efficiency5,6. Over the last decade, the progression from pure III-V materials platforms to silicon photonics has significantly broadened the scope of integrated photonics, by combining integrated lasers with the high-volume, advanced fabrication capabilities of the commercial electronics industry7,8. Yet, despite remarkable manufacturing advantages, reliance on silicon-based waveguides currently limits the spectral window available to photonic integrated circuits (PICs). Here, we present a new generation of integrated photonics by directly uniting III-V materials with silicon nitride waveguides on Si wafers. Using this technology, we present a fully integrated PIC at photon energies greater than the bandgap of silicon, demonstrating essential photonic building blocks, including lasers, amplifiers, photodetectors, modulators and passives, all operating at submicrometre wavelengths. Using this platform, we achieve unprecedented coherence and tunability in an integrated laser at short wavelength. Furthermore, by making use of this higher photon energy, we demonstrate superb high-temperature performance and kHz-level fundamental linewidths at elevated temperatures. Given the many potential applications at short wavelengths, the success of this integration strategy unlocks a broad range of new integrated photonics applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos