Targeted activation in localized protein environments via deep red photoredox catalysis.
Nat Chem
; 15(1): 101-109, 2023 01.
Article
em En
| MEDLINE
| ID: mdl-36216892
State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias do Colo
/
Luz
Limite:
Humans
Idioma:
En
Revista:
Nat Chem
Assunto da revista:
QUIMICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos