Your browser doesn't support javascript.
loading
Te/SnS2 tunneling heterojunctions as high-performance photodetectors with superior self-powered properties.
Cao, Xuanhao; Lei, Zehong; Zhao, Shuting; Tao, Lili; Zheng, Zhaoqiang; Feng, Xing; Li, Jingbo; Zhao, Yu.
Afiliação
  • Cao X; Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China zhaoyu@gdut.edu.cn.
  • Lei Z; Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China zhaoyu@gdut.edu.cn.
  • Zhao S; Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China zhaoyu@gdut.edu.cn.
  • Tao L; Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China zhaoyu@gdut.edu.cn.
  • Zheng Z; Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China zhaoyu@gdut.edu.cn.
  • Feng X; Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China zhaoyu@gdut.edu.cn.
  • Li J; Guangdong Key Lab of Chip and Integration Technology, Institute of Semiconductors, South China Normal University Guangzhou 510631 P. R. China.
  • Zhao Y; Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China zhaoyu@gdut.edu.cn.
Nanoscale Adv ; 4(20): 4296-4303, 2022 Oct 11.
Article em En | MEDLINE | ID: mdl-36321139
ABSTRACT
The tunneling heterojunctions made of two-dimensional (2D) materials have been explored to have many intriguing properties, such as ultrahigh rectification and on/off ratio, superior photoresponsivity, and improved photoresponse speed, showing great potential in achieving multifunctional and high-performance electronic and optoelectronic devices. Here, we report a systematic study of the tunneling heterojunctions consisting of 2D tellurium (Te) and Tin disulfide (SnS2). The Te/SnS2 heterojunctions possess type-II band alignment and can transfer to type-III one under reverse bias, showing a reverse rectification ratio of about 5000 and a current on/off ratio over 104. The tunneling heterojunctions as photodetectors exhibit an ultrahigh photoresponsivity of 50.5 A W-1 in the visible range, along with a dramatically enhanced photoresponse speed. Furthermore, due to the reasonable type-II band alignment and negligible band bending at the interface, Te/SnS2 heterojunctions at zero bias exhibit excellent self-powered performance with a high responsivity of 2.21 A W-1 and external quantum efficiency of 678%. The proposed heterostructure in this work provides a useful guideline for the rational design of a high-performance self-powered photodetector.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Adv Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Adv Ano de publicação: 2022 Tipo de documento: Article