Your browser doesn't support javascript.
loading
Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal-Organic Framework-Based Nanosystem for Infected Tissue Regeneration.
Xie, Wenjia; Chen, Junyu; Cheng, Xinting; Feng, Hao; Zhang, Xin; Zhu, Zhou; Dong, Shanshan; Wan, Qianbing; Pei, Xibo; Wang, Jian.
Afiliação
  • Xie W; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
  • Chen J; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
  • Cheng X; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
  • Feng H; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
  • Zhang X; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
  • Zhu Z; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
  • Dong S; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
  • Wan Q; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
  • Pei X; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
  • Wang J; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Small ; 19(14): e2205941, 2023 04.
Article em En | MEDLINE | ID: mdl-36587967
ABSTRACT
Drug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal-organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications. Herein, a MOFs-based nanosystem (AgNPs@MOFs) with enhanced visible light response and charge carrier separation is developed by modifying MOFs with silver nanoparticles (AgNPs) to improve PDT efficiency. The AgNPs@MOFs with enhanced photodynamic performance under visible light irradiation mainly disrupt bacteria translation process and the metabolism of purine and pyrimidine. In addition, the introduction of AgNPs endows nanosystems with chemotherapy ability, which causes destructive effect on bacterial cell membrane, including membrane ATPase protein and fatty acids. AgNPs@MOFs show excellent synergistic drug-resistant bacterial killing efficiency through multiple mechanisms, which further restrain bacterial resistance. In addition, biocompatible AgNPs@MOFs pose potential tissue regeneration ability in both Methicillin-resistant Staphylococcus aureus (MRSA)-related soft and hard tissue infection. Overall, this study provides a promising perspective in the exploration of AgNPs@MOFs as nano antibacterial medicine against drug-resistant bacteria for infected tissue regeneration in the future.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Bacterianas / Nanopartículas Metálicas / Staphylococcus aureus Resistente à Meticilina / Estruturas Metalorgânicas Limite: Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Bacterianas / Nanopartículas Metálicas / Staphylococcus aureus Resistente à Meticilina / Estruturas Metalorgânicas Limite: Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China